A Multiscale Ensemble Filtering System for Hydrologic Data Assimilation. Part I: Implementation and Synthetic Experiment
نویسندگان
چکیده
The multiscale autoregressive (MAR) framework was introduced in the last decade to process signals that exhibit multiscale features. It provides the method for identifying the multiscale structure in signals and a filtering procedure, and thus is an efficient way to solve the optimal estimation problem for many high-dimensional dynamic systems. Later, an ensemble version of this multiscale filtering procedure, the ensemble multiscale filter (EnMSF), was developed for estimation systems that rely on Monte Carlo samples, making this technique suitable for a range of applications in geosciences. Following the prototype study that introduced EnMSF, a strategy is devised here to implement the multiscale method in a hydrologic data assimilation system, which runs a land surface model. Assimilation experiments are carried out over the Arkansas–Red River basin, located in the central United States (;645 000 km), using the Variable Infiltration Capacity (VIC) model with a computing grid of 1062 pixels. A synthetic data assimilation experiment is performed, driven by meteorological forcing fields downscaled from the ensemble forecasts made by the NOAA/National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS). The classic full-rank ensemble Kalman filter is used as the benchmark to evaluate the multiscale filter performance, and comparisons are also made with a horizontally uncoupled filter. It is demonstrated that the multiscale filter is able to closely approximate the full-rank solution with a low computational cost (;1/20 of the full-rank filter) in an experiment in which the top-layer soil moisture is assimilated, whereas the horizontally uncoupled filter fails to approximate the full-rank solution.
منابع مشابه
Sequential data assimilation for streamflow forecasting using a distributed hydrologic model: particle filtering and ensemble Kalman filtering
Accurate streamflow predictions are crucial for mitigating flood damage and addressing operational flood scenarios. In recent years, sequential data assimilation methods have drawn attention due to their potential to handle explicitly the various sources of uncertainty in hydrologic models. In this study, we implement two ensemble-based sequential data assimilation methods for streamflow foreca...
متن کاملHydrologic Data Assimilation with a Hillslope-Scale-Resolving Model and L Band Radar Observations: Synthetic Experiments with the Ensemble Kalman Filter
متن کامل
A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter
[1] Sequential data assimilation methods, such as the ensemble Kalman filter (EnKF), provide a general framework to account for various uncertainties in hydrologic modeling, simultaneously estimating dynamic states and model parameters with a state augmentation technique. But this technique suffers from spurious correlation for impulse responses, such as the rainfall-runoff process, especially ...
متن کاملCorrecting first-order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme
[1] A season-long, multiscale, multifrequency radiometric data assimilation experiment is performed to test the feasibility of snow water equivalent (SWE) estimation. Synthetic passive microwave (PM) observations at Advanced Microwave Scanning Radiometer-Earth Observing System frequencies and 25 km resolution and synthetic near infrared (NIR) narrowband albedo observations corresponding to Mode...
متن کاملStochastic Superparameterization and Multiscale Filtering of Turbulent Tracers
Data assimilation or filtering combines a numerical forecast model and observations to provide accurate statistical estimation of the state of interest. In this paper we are concerned with accurate data assimilation of a sparsely observed passive tracer advected in turbulent flows using a reduced-order forecast model. The turbulent flows which contain anisotropic and inhomogeneous structures su...
متن کامل